Abstract

In recent years, paper-based nucleic acid sensors have been demonstrated for the ability to detect DNA and RNA molecules extracted from viruses and bacteria. In clinical samples, these nucleic acids are mostly encapsulated in lipid membranes and need to be released before being analyzed using paper-based sensors. For the nucleic acid amplification tests (NAATs), it is also desirable to remove the interfering molecules that can inhibit the nucleic acid amplification. To achieve a field deployable NAAT, we report a portable sensor system that combines the thermolysis and paper-based NAATs to detect target RNA molecules carried by viral and exosomal nanoparticles. The sensor cartridge includes a lysis chamber with a pressure-controlled diaphragm valve, paper flow channels, and three paper-based NAAT reaction chambers to extract, transport, and detect nucleic acids respectively. A compact instrument was prototyped to automate the assay, collect fluorescence images of the nucleic acid amplification, and generate amplification curves for NAATs. The pump-free and paper-based sensor achieved quantitative analysis of influenza A virus (IAV) RNA and exosome microRNA within 1 h, with the lowest detect concentration of 104 TCID50/mL and 106 EV/mL for IAV and exosome, respectively. Owing to the advantages of easy storage, simple operation, and low cost, such as system has great potential to be used as a point-of-care test for in-field diagnosis of viral and bacterial infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call