Abstract

IKONOS 1-m panchromatic and 4-m multispectral images were used to map mangroves in a study site located at Punta Galeta on the Caribbean coast of Panama. We hypothesized that spectral separability among mangrove species would be enhanced by taking the object as the basic spatial unit as opposed to the pixel. Three different classification methods were investigated: maximum likelihood classification (MLC) at the pixel level, nearest neighbour (NN) classification at the object level, and a hybrid classification that integrates the pixel and object-based methods (MLCNN). Specifically for object segmentation, which is the key step in object-based classification, we developed a new method to choose the optimal scale parameter with the aid of Bhattacharya Distance (BD), a well-known index of class separability in traditional pixel-based classification. A comparison of BD values at the pixel level and a series of larger scales not only supported our initial hypothesis, but also helped us to determine an optimal scale at which the segmented objects have the potential to achieve the best classification accuracy. Among the three classification methods, MLCNN achieved the best average accuracy of 91.4%. The merits and restrictions of pixel-based and object-based classification methods are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.