Abstract

Integration of magnetic functional components in LTCC circuit boards calls for co-firing of dielectric and ferrite tapes. Ni-Cu-Zn ferrites with permeability of μ =900 were developed which can be fully densified at the standard LTCC sintering temperature of 900 °C. Successful co-firing of this ferrite with dielectric tapes requires the adaptation of the shrinkage behavior of the materials as well as the thermal expansion during the cooling period - especially in the temperature range below the transformation point of the glassy phase of the dielectric tape. To match these preconditions, a new dielectric LTCC material with steep sintering curve and high thermal expansion coefficient was designed. Sintered multilayer composed of Ni-Cu-Zn ferrite and tailored dielectric tapes are free of cracks and possess no open porosity. No significant interdiffusion between the ferrite and dielectric tapes was found by EDX measurements. Compared to pure ferrite laminates the permeability of co-sintered Ni-Cu-Zn ferrite layers is drastically reduced to 400, i.e. a decrease of more than 50 %. To investigate the origin of this permeability reduction, Ni-Cu-Zn ferrite laminates were sintered separately, and in combination with alumina release tapes or dielectric tapes, respectively. SEM and EDX analysis of co-fired laminates reveal differences in the ferrite grain growth behavior. Ferrite laminates with homogeneous microstructure and grain size up to 50 μm exhibit large permeability. However, growth of ferrite grains does not take place near the interface between ferrite and release or dielectric tapes. There is a strong correlation between high permeability and volume fraction of large ferrite grains. Regions of fine and coarse grains inside the ferrite layers show different bismuth concentration; the Bi-content is larger in regions of fine ferrite grains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call