Abstract

Current multiple classifier systems for unconstrained handwritten text recognition do not provide a straightforward way to utilize language model information. In this paper, we describe a generic method to integrate a statistical n-gram language model into the combination of multiple offline handwritten text line recognizers. The proposed method first builds a word transition network and then rescores this network with an n-gram language model. Experimental evaluation conducted on a large dataset of offline handwritten text lines shows that the proposed approach improves the recognition accuracy over a reference system as well as over the original combination method that does not include a language model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.