Abstract

A solution to the problem of producing long-range forecasts on a short sampling interval is proposed. It involves the incorporation of information from a long sampling interval series, which could come from an independent source, into forecasts produced by a state-space model based on a short sampling interval. The solution is motivated by the desire to incorporate yearly electricity consumption information into weekly electricity consumption forecasts. The weekly electricity consumption forecasts are produced by a state-space structural time series model. It is shown that the forecasts produced by the forecasting model based on weekly data can be improved by the incorporation of longer-time-scale information, particularly when the forecast horizon is increased from 1 year to 3 years. A further example is used to demonstrate the approach, where yearly UK primary fuel consumption information is incorporated into quarterly fuel consumption forecasts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.