Abstract

In this paper, a method that entails using microwave thermal oxidation to form a high-quality gate dielectric on Ge through surface passivation at considerably low temperatures (<400 °C) is presented. Formation of the GeOx layer was confirmed by x-ray photoelectron spectroscopy. To reduce the bulk trap density and interface trap density (Dit), microwave thermal oxidation was employed for postdeposition microwave thermal oxidation after the deposition of Al2O3 through atomic layer deposition. Tiny frequency dispersion in capacitance measurement and a low Dit value of 5.9 × 1011 cm−2 eV−1 near the midgap confirmed a desirable passivation effect, which was favorable in mitigating the formation of dangling bonds on the Ge surface. A small hysteresis in capacitance was also observed, suggesting that the bulk dielectric was of high quality. On the basis of these characteristics, microwave-activated GeOx is a promising passivation layer material for aggressively scaled Ge-related metal oxide semiconductor devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call