Abstract

This paper presents two microfabrication approaches for multi-layer coils for vibration-energy harvesters. A magnet array is arranged with alternating north- and south-orientation to provide a rapidly changing magnetic field for high electromagnetic energy conversion. Multi-turn spiral coils on silicon wafer are aligned to the magnet array for maximum magnetic flux change. One type of coil is made out of 300 μm-thick copper that is electroplated with silicon mold, and the other is built on 25 μm-thick copper electroplated with photoresist mold. The low resistive coils fabricated by the first approach are integrated in a microfabricated energy harvester of 17 × 7 × 1.7 mm3 (=0.2 cm3) weighing 0.8 g, which generates 14.3 μW power output (into 0.7 Ω load) from vibration amplitude of 6 μm at 250 Hz. The latter approach is used to make a 1080-turn coil for a microfabricated electromagnetic energy harvester with magnet array and plastic spring. Though the size and weight of the harvester are only 44 × 20 × 6 mm3 (=5.3 cm3) and 12 g, respectively, it generates 1.04 mW power output (into 190 Ω load) when it is vibrated at 75 Hz with vibration amplitude of 220 μm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.