Abstract

With advances in micro fuel cell development, the production of hydrogen for micro reformer has become increasingly important. However, some problems regarding the micro reformer are yet to be resolved. These include reducing the size, reducing the quantity of CO and combining the fuel cell, among others. Accordingly, in this investigation, a micro temperature sensor and a heater are combined inside a stainless steel-based micro reformer to measure and control the temperature and thus improve performance and minimize the concentration of CO. In this work, micro-electro-mechanical-systems (MEMS) of the micro channel type are fabricated on a stainless steel substrate to enhance the methanol conversion ratio. The micro temperature sensor and heater are made of gold and placed inside the micro reformer. Although the micro temperature sensor and heater have already been used to measure and control temperature in numerous fields, they have not been employed in micro reformer and commercial products. Therefore, this study presents a new approach for integrating a micro temperature sensor and heater in a stainless steel-based micro reformer to minimize the size and improve performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call