Abstract

Management of skin injuries imposes a substantial financial burden on patients and hospitals, leading to diminished quality of life. Periostin (rhOSF), an extracellular matrix component, regulates cell function, including a proliferative healing phase, representing a key protein to promote wound healing. Despite its proven efficacy in vitro, there is a lack of scaffolds that facilitate the in situ delivery of rhOSF. In addition, there is a need for a scaffold to not only support cell growth, but also to resist the mechanical forces involved in wound healing. In this work, we synthesized rhOSF-loaded mesoporous nanoparticles (MSNs) and incorporated them into a cell-laden gelatin methacryloyl (GelMA) ink that was bioprinted into melt electrowritten poly(ε-caprolactone) (PCL) microfibrous (MF-PCL) meshes to develop mechanically competent constructs. Diffraction light scattering (DLS) analysis showed a narrow nanoparticle size distribution with an average size of 82.7 ± 13.2 nm. The rhOSF-loaded hydrogels showed a steady and controlled release of rhOSF over 16 days at a daily dose of ∼40 ng/mL. Compared with blank MSNs, the incorporation of rhOSF markedly augmented cell proliferation, underscoring its contribution to cellular performance. Our findings suggest a promising approach to address challenges such as prolonged healing, offering a potential solution for developing robust, biocompatible, and cell-laden grafts for burn wound healing applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.