Abstract

Circadian rhythms (CRs) are intrinsic clocks organizing the behavior and physiology of organisms. These clocks are thought to have coevolved with cellular redox regulation. Metabolism, redox homeostasis, circadian clock, and diet offer insights into aging. Mitochondria play a pivotal role in redox homeostasis, CR, and aging. Melatonin is synthesized in mitochondria, is the key regulator of CRs, and shows substantial antioxidative effects. Melatonin levels tend to decrease significantly with advancing age. Recent reports showed that disruptions of CRs may render aging populations even more susceptible to age-related disorders. Recent and high-quality articles investigating CR, redox homeostasis, aging, and their relationship during aging process were included. Putting special emphasis on the possible effects of melatonin on redox homeostasis and mitochondrial dynamics, recent clinical evidence highlighting the importance of circadian mechanisms was utilized. A deeper understanding of the role of altered mitochondrial redox homeostasis in the pathogenesis of age-related disorders and its relationship with CR could offer novel therapeutic interventions. Chronotherapy, a therapeutic approach considering CR of organisms and best therapeutic times, could potentially reduce side effects and improve therapeutic efficiency. Redox homeostasis, energy metabolism, and CR are all intertwined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.