Abstract
The inferior colliculus (IC) is the major midbrain auditory integration center, where virtually all ascending auditory inputs converge. Although the IC has been extensively studied for sound processing, little is known about the neural activity of the IC in moving subjects, as frequently happens in natural hearing conditions. Here, by recording neural activity in walking mice, we show that the activity of IC neurons is strongly modulated by locomotion, even in the absence of sound stimuli. Similar modulation was also found in hearing-impaired mice, demonstrating that IC neurons receive non-auditory, locomotion-related neural signals. Sound-evoked activity was attenuated during locomotion, and this attenuation increased frequency selectivity across the neuronal population, while maintaining preferred frequencies. Our results suggest that during behavior, integrating movement-related and auditory information is an essential aspect of sound processing in the IC.
Highlights
The inferior colliculus (IC) is the major auditory integration center in the midbrain, where virtually all ascending inputs from the auditory brainstem and descending cortical inputs converge (Adams, 1979; Adams, 1980; Malmierca, 2004; Winer and Schreiner, 2005)
When the firing rates between stationary and walking periods were compared, in the absence of sound stimulus presentation, we found that the IC neuron firing rates could be strongly modulated during locomotion
By recording neural activity in the IC of behaving mice, we found that locomotion can modulate spontaneous activity bidirectionally and attenuates sound-evoked activity
Summary
The inferior colliculus (IC) is the major auditory integration center in the midbrain, where virtually all ascending inputs from the auditory brainstem and descending cortical inputs converge (Adams, 1979; Adams, 1980; Malmierca, 2004; Winer and Schreiner, 2005). The shell region of the IC (the lateral and dorsal cortex) receives non-auditory projections such as somatosensory inputs (Cooper and Young, 1976; Morest and Oliver, 1984; Coleman and Clerici, 1987; Lesicko et al, 2016) and performs multi-sensory integration (Aitkin et al, 1978; Aitkin et al, 1981; Jain and Shore, 2006) This region has been implicated in generating sound-driven behavior by projecting to motor-related regions (Huffman and Henson, 1990; Xiong et al, 2015). Our results suggest that auditory midbrain neurons integrate movement-related information, which may be important for auditory processing during movement and acoustically guided behavior
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.