Abstract

The spatial extent of the cortical filters selective for different spatial frequencies and orientations is limited. We studied psychophysically how information from the local filters is integrated into global pattern shapes, i.e., whether performance in the identification of a global pattern consisting of small, locally oriented Gabor elements depends on the orientations of those elements. The observer was presented with an E-like stimulus pattern shape comprised of oriented Gabor patches on a blank background, and the performance measure was the threshold contrast for identifying the orientation of the E pattern (four possible rotated orientations). The results showed that contrast thresholds were significantly lower when the local elements all shared the same orientation (e.g., all horizontal) compared with the condition in which the elements had mixed orientations (both horizontal and vertical). The enhancement effect due to uniform local orientations can be explained by two factors: One is local facilitatory interactions between the orientation selective filters, and the other is second-order information integration across the filters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.