Abstract

An integrated fuzzy min-max neural network (IFMMNN) is developed to avoid the classification result influenced by the input sequence of training samples, and the learning algorithm can be used as pure clustering, pure classification, or a hybrid clustering classification. Three experiments are designed to realize the aim. The serial input of samples is changed to parallel input, and the fuzzy membership function is substituted by similarity matrix. The experimental results show its superiority in contrast with the original method proposed by Simpson.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.