Abstract

Maintenance of chromosomal stability depends on error-free chromosome segregation. The pseudokinase BUBR1 is essential for this, because it is a core component of the mitotic checkpoint and is required for formation of stable kinetochore-microtubule attachments. We have identified a conserved and highly phosphorylated domain (KARD) in BUBR1 that is crucial for formation of kinetochore-microtubule attachments. Deletion of this domain or prevention of its phosphorylation abolishes formation of kinetochore microtubules, which can be reverted by inhibiting Aurora B activity. Phosphorylation of KARD by PLK1 promotes direct interaction of BUBR1 with the PP2A-B56α phosphatase that counters excessive Aurora B activity at kinetochores. As a result, removal of BUBR1 from mitotic cells or inhibition of PLK1 reduces PP2A-B56α kinetochore binding and elevates phosphorylation of Aurora B substrates on the outer kinetochore. We propose that PLK1 and BUBR1 cooperate to stabilize kinetochore-microtubule interactions by regulating PP2A-B56α-mediated dephosphorylation of Aurora B substrates at the kinetochore-microtubule interface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.