Abstract

One-third of the global population depends on groundwater for drinking, which is an even larger proportion for arid regions. The integration of isotopic and geophysical applications has been very useful in understanding the process of groundwater recharge. The aim of this study is to define a conceptual model that describes groundwater functions within an aquifer located in a semi-arid region by identifying recharge patterns based on the isotopic characteristics of: Rainfall, surface water, shallow and deep groundwater, and incorporating regional geophysical data. We demonstrated that rainfall was affected by sub-cloud evaporation and altitude. Shallow and deep modern groundwater samples were clustered and exhibited similar evolution from rainfall. However, different groups recharged from different precipitation sources compared to the local one. In the current study, we analyzed the isotopic evolution of deep groundwater over a 10-year period, which was mainly affected by the incorporation of different flows with different isotopic signatures and the hydrodynamics of the area. We performed two geoelectrical sections in the study area to improve the understanding of the hydrogeological setting and water movement patterns. The new conceptual model should help stakeholders in the context of water management policies for the study area.

Highlights

  • Arid and semiarid regions represent >30% of the global terrestrial surface area and receive

  • The main factors controlling groundwater recharge on catchment-scale are: (1) Basin morphology and stream channel position within a landscape; (2) hydraulic conductivity of the porous medium connecting stream channels to

  • The results showed that UWLR was the better option

Read more

Summary

Introduction

Arid and semiarid regions represent >30% of the global terrestrial surface area and receive

Objectives
Methods
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.