Abstract

We integrate superparamagnetic iron oxide nanoparticles with polyaspartamide (PA) biopolymer to form a biological construct that functions as a tracking, targeting and drug-delivery system for cancer diagnosis and therapy. Iron oxide nanoparticles with uniformly distributed average spherical diameters of around 10 nm and superparamagnetic characteristics play a key role in increasing the transverse 1/T2 relaxation rate or darkening the T2-weighted MR image for cancer diagnosis using MRI. In in vitro MRI testing on cancer cells, the MR images of samples with the bio-constructshow a much clearer contrast effect than those of controls. The PA biopolymer plays an essential role in enhancing the hydrophilicity and biocompatibility of the bio-construct. In addition, as a multifunctional polymer, PA is conjugated with biotin and doxorubicin (Dox) functional groups to enhance targeting and impairment of cancer cells. In in vivo testing on cancer tumors, injection with the bio-construct decreased the magnitude of cancer tumor volume growth by three times compared with that of uninjected controls. The physicochemical characteristics of the bio-construct and the roles of biotin and Dox functional groups are examined and discussed in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call