Abstract
BackgroundMyriads of signaling pathways in a single cell function to achieve the highest spatio-temporal integration. Data are accumulating on the role of electromechanical soliton-like waves in signal transduction processes. Theoretical studies strongly suggest feasibility of both classical and quantum computing involving microtubules. AimA theoretical study of the role of the complex composed of the plasma membrane and the microtubule-based cytoskeleton as a system that transmits, stores and processes information. MethodsTheoretical analysis presented here refers to (i) the Penrose–Hameroff theory of consciousness (Orchestrated Objective Reduction; Orch OR), (ii) the description of the centrosome as a reference system for construction of the 3D map of the cell proposed by Regolini, (iii) the Heimburg–Jackson model of the nerve pulse propagation along axons’ lipid bilayer as soliton-like electro-mechanical waves. Results and conclusionThe ideas presented in this paper provide a qualitative model for the decision-making processes in a living cell undergoing a differentiation process. OutlookThis paper paves the way for the real-time live-cell observation of information processing by microtubule-based cytoskeleton and cell fate decision making.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.