Abstract
The era of information economy leads to redesigning not only business models of organizations but also to rethinking the human resources paradigm to harness the power of state-of-the-art technology for Human Capital Management (HCM) optimization. Predictive analytics and computational intelligence will bring transformative change to HCM. This paper deals with issues of HCM optimization based on the models of predictive workforce analytics (WFA) and Business Intelligence (BI). The main trends in the implementation of predictive WFA in the world and in Ukraine, as well as the need to protect business data for security of entrepreneurship and the tasks of predictive analysis in the context of proactive HCM were examined. Some models of effective integration of information systems for predictive WFA were proposed, their advantages and disadvantages were analyzed. These models combine ERP, HCM, BI, Predictive Analytics, and security systems. As an example, integration of HCM system, the analytics platform (IBM SPSS Modeler), BI system (IBM Planning Analytics), and security platform (IBM QRadar Security Intelligence Platform) for predicting the employee attrition was shown. This integration provides a cycle ‘prediction – planning – performance review – causal analysis’ to support protected data-driven decision making in proactive HCM The results of the research support ensuring the effective management of all spectrum of risks associated with the collection, storage and use of data. 
 Keywords: Workforce Analytics (WFA), Human Capital Management (HCM), Predictive Analytics, Proactive Management, BI, Information Systems (IS), Integration, Security of Entrepreneurship
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.