Abstract

Hydrokinetic turbine (HKT) generates electricity from the kinetic energy of flowing water and is suitable for energizing remote communities living in the proximity of rivers or canals. In this paper, a procedure for sizing components of a standalone hybrid energy system involving hydrokinetic turbine, photovoltaic and battery storage system is explained. Appropriate choices of optimum number and size of HKT modules, PV array capacity and minimum storage requirement are essential for the success of HKT-PV-battery system. The hydrokinetic turbine is modelled as a Savonius turbine and the performance parameters are established using ANSYS. Determination of the system design space is explained with an illustrative example, based on a time series simulation of the entire system. The sizing curve of the hybrid system is generated by plotting the PV array rating vs storage capacity diagram for a specified number of HKT modules. A parametric study of hydrokinetic turbine is conducted to generate a set of sizing curves and the best system configuration is identified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call