Abstract

The conventional processing route of TNM (Ti-Nb-Mo) alloys combines casting and Hot Isostatic Pressing (HIP) followed by forging and multiple heat treatments to establish optimum properties. This is a time-consuming and costly process. In this study we present an advanced alternative TNM alloy processing route combining HIP and heat treatments into a single process, which we refer to as IHT (integrated HIP heat treatment), applied to a modified TNM alloy with 1.5B. A Quintus HIP lab unit with a quenching module was used, achieving fast and controlled cooling, which differs from the slow cooling rates of conventional HIP units. A Ti-42.5Al-3.5Nb-1Mo-1.5B (at.%) was subjected to an integrated two HIP steps at 200 MPa, one at 1250 °C for 3 h and another at 1260 °C for 1 h, both under a protective Ar atmosphere and followed by cooling at 30 K/min down to room temperature. The results were compared against the Ti-43.5Al-3.5Nb-1Mo-0.8B (at.%) thermomechanically processed in a conventional way. Applying IHT processing to the 1.5B alloy does indeed achieve good creep strength, and the secondary creep rate of the IHT processed materials is similar to that of conventionally forged TNM alloys. Thus, the proposed advanced IHT processing route could manufacture more cost-effective TiAl components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.