Abstract

The estimation of vegetation primary productivity is particularly important in fragile Mediterranean environments that are vulnerable to both natural and human-induced perturbations. The current work was aimed at using remotely sensed data taken by various sensors to infer information about a protected coastal pine forest in Tuscany (Central Italy), which could serve for driving a simplified model of carbon fluxes, C-Fix. Being based on the direct relationship between normalized difference vegetation index (NDVI) and fraction of absorbed photosynthetically active radiation (FAPAR), C-Fix uses satellite and standard meteorological data to simulate gross (GPP) and net (NPP) primary productivity of forest ecosystems. Due to the limited size of the study area, a major difficulty was in creating an NDVI dataset with suitable spatial and temporal resolutions, which was essential for the model functioning. To reach this objective, eight Thematic Mapper (TM)/Enhanced Thematic Mapper Plus (ETM+) images of two years (2000 and 2001) were merged to low-resolution NDVI estimates taken by both the Advanced Very High Resolution Radiometer (AVHRR) and VEGETATION (VGT) sensors. The C-Fix outputs for representative pine forest sites were evaluated by comparison to accurate estimates derived from a model of forest ecosystem processes previously calibrated in a similar environment (Forest-BGC). This analysis showed the potential of C-Fix for rapidly estimating GPP over wide forest areas when suitable NDVI inputs are provided. In particular, a slight superiority of VGT over AVHRR data was demonstrated, which could be reasonably attributed to the relevant higher radiometric and geometric properties. The estimation of NPP was instead quite inaccurate, due to the problematic simulation of forest respiration, which should necessarily rely on more complete modeling operations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.