Abstract

Cooking with active oxygen and solid alkali (CAOSA) is a mild and environmentally friendly method for separation of lignin components. The degradation mechanism of hemicellulose associated with this method has been investigated. It was found that the hemicellulose-derived polysaccharides were directly oxidized rather than hydrolyzed to monosaccharides for degradation. To avoid the undesirable degradation of hemicellulose components by CAOSA, the idea of separating hemicellulose first in the form of xylan to produce xylooligosaccharide was presented by this study. Although hydrothermal autocatalysis has been commonly used in hemicellulose separation, the effects of acid-enhanced hydrothermal method and alkali-suppressed hydrothermal method on hydrothermal autocatalysis were systematically compared for the first time, and it was found that the acid-enhanced method was beneficial for highly selective extraction of xylan. Then, the hemicellulose-removed bamboo was treated with CAOSA process to separate lignin from cellulose. It was found that solid alkali dosage of CAOSA could be evidently decreased for hemicellulose-removed bamboo, which was helpful to reduce the cost of CAOSA. Coupling hemicellulose pre-extraction and CAOSA lignin fractionation strategy, a comprehensive biorefinery case for bamboo biomass could be anticipated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.