Abstract

In this paper, a spatiocontextual unsupervised change detection technique for multitemporal, multispectral remote sensing images is proposed. The technique uses a Gibbs Markov random field (GMRF) to model the spatial regularity between the neighboring pixels of the multitemporal difference image. The difference image is generated by change vector analysis applied to images acquired on the same geographical area at different times. The change detection problem is solved using the maximum a posteriori probability (MAP) estimation principle. The MAP estimator of the GMRF used to model the difference image is exponential in nature, thus a modified Hopfield type neural network (HTNN) is exploited for estimating the MAP. In the considered Hopfield type network, a single neuron is assigned to each pixel of the difference image and is assumed to be connected only to its neighbors. Initial values of the neurons are set by histogram thresholding. An expectation-maximization algorithm is used to estimate the GMRF model parameters. Experiments are carried out on three-multispectral and multitemporal remote sensing images. Results of the proposed change detection scheme are compared with those of the manual-trial-and-error technique, automatic change detection scheme based on GMRF model and iterated conditional mode algorithm, a context sensitive change detection scheme based on HTNN, the GMRF model, and a graph-cut algorithm. A comparison points out that the proposed method provides more accurate change detection maps than other methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.