Abstract

Probabilistic seismic hazard assessment (PSHA) takes into account as much data as possible for defining the initial seismic source zone model. In response to this, an algorithm has been developed for integration of geological, geophysical and seismological data through a spatial index showing the presence or absence of a potential seismic source feature in the input data. The spatial matching index (SMI) is calculated to define the coincidence of independent data showing any indications for existence of a fault structure. It is applied for hazard assessment of Bulgaria through quantification of the seismic potential of 416 square blocks, 20 × 20 km in size covering the entire territory of Bulgaria and extended by 20 km outside of the country borders. All operations are carried out in GIS environment using its capabilities to work with different types of georeferenced spatial data. Results show that the highest seismic potential (largest SMI) is observed in 56 block elements (13% of the territory) clearly delineating cores of the source zones. Partial match is registered in 98 block elements when one of the features is missing. Not any evidence for earthquake occurrence is predicted by our calculation in 117 elements, comprising 28% of the examined area. The quantitative parameter for spatial data integration which is obtained in the present research may be used to analyze information regardless of its type and purpose.

Highlights

  • It is applied for hazard assessment of Bulgaria through quantification of the seismic potential of 416 square blocks, 20 × 20 km in size covering the entire territory of Bulgaria and extended by 20 km outside of the country borders

  • Results show that the highest seismic potential is observed in 56 block elements (13% of the territory) clearly delineating cores of the source zones

  • Reference [2] presents a complex analysis of the existing seismological, geological, geophysical and geodetic information using the results obtained by a big team of experts who independently traced the lines on the separate maps and after a visual inspection determined the position of the complex lineaments

Read more

Summary

Introduction

A key part of this analysis is the identification of regional or local seismotectonic domains that, based on geologic, geophysical, and seismological information, may be interpreted to have relatively consistent spatial and temporal variations in historical seismicity. As a result of the neotectonic evolution and dynamics of the Aegean extensional system a number of seismological structures exist and accommodate the crustal deformation in Bulgaria [1] posing serious challenges to seismic hazard assessment. Reference [2] presents a complex analysis of the existing seismological, geological, geophysical and geodetic information using the results obtained by a big team of experts (more than 15 persons) who independently traced the lines on the separate maps and after a visual inspection determined the position of the complex lineaments. A huge amount of time, people and resources have been invested to ensure objective and reliable integration of the input data

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.