Abstract

In the present paper, the genetic programing (GP) is integrated with the genetic algorithm (GA) for deriving heat transfer correlations. In the process of developing heat transfer correlations with the approach (GP with GA (GPA)), the GP is first employed to obtain some potential optimal forms. After that, the forms are further optimized with the global GA to reach minimum errors between the predicted values and experimental values. With the proposed approach, three typical different heat transfer problems are applied to the data reduction processes from published experimental data, which are heat transfer in a shell-and-tube heat exchanger (STHE) with continuous helical baffles, a single row heat exchanger with helically finned tubes and a finned oval-tube heat exchanger with double rows of tubes, respectively. The results indicate that the GPA approach could improve the performance of heat transfer correlations obtained with the GP. Compared with the power-law-based correlations, the heat transfer correlations obtained with the approach have higher predicted accuracies and more excellent robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.