Abstract

BackgroundLung cancer causes approximately 1.2 million deaths per year worldwide, and non-small cell lung cancer (NSCLC) represents 85% of all lung cancers. Understanding the molecular events in non-small cell lung cancer (NSCLC) is essential to improve early diagnosis and treatment for this disease.Methodology and Principal FindingsIn an attempt to identify novel NSCLC related genes, we performed a genome-wide screening of chromosomal copy number changes affecting gene expression using microarray based comparative genomic hybridization and gene expression arrays on 32 radically resected tumor samples from stage I and II NSCLC patients. An integrative analysis tool was applied to determine whether chromosomal copy number affects gene expression. We identified a deletion on 14q32.2-33 as a common alteration in NSCLC (44%), which significantly influenced gene expression for HSP90, residing on 14q32. This deletion was correlated with better overall survival (P = 0.008), survival was also longer in patients whose tumors had low expression levels of HSP90. We extended the analysis to three independent validation sets of NSCLC patients, and confirmed low HSP90 expression to be related with longer overall survival (P = 0.003, P = 0.07 and P = 0.04). Furthermore, in vitro treatment with an HSP90 inhibitor had potent antiproliferative activity in NSCLC cell lines.ConclusionsWe suggest that targeting HSP90 will have clinical impact for NSCLC patients.

Highlights

  • Lung cancer is the leading cause of cancer deaths worldwide [1], and non-small cell lung cancer (NSCLC) represents 85% of lung cancers

  • We suggest that targeting HSP90 will have clinical impact for NSCLC patients

  • Using array based comparative genomic hybridization and gene expression microarrays, DNA copy number changes and gene expression can be measured throughout the whole genome of tumor cells

Read more

Summary

Introduction

Lung cancer is the leading cause of cancer deaths worldwide [1], and non-small cell lung cancer (NSCLC) represents 85% of lung cancers. A better understanding of the molecular events underlying the development and progression of the disease may contribute to improve clinical management of NSCLC patients. Chromosomal aberrations are thought to be critical events in human tumorigenesis, and several genomic regions frequently harboring DNA gains (3q, 5p, 7q, 8q, 11q and 16p) and losses (3p, 4q, 5q, 6q, 8p 9p and 13q, 17q) have been identified in NSCLC patients [3]. Lung cancer causes approximately 1.2 million deaths per year worldwide, and non-small cell lung cancer (NSCLC) represents 85% of all lung cancers. Understanding the molecular events in non-small cell lung cancer (NSCLC) is essential to improve early diagnosis and treatment for this disease

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call