Abstract

Titanium and its alloys exhibit numerous uses in aerospace, automobile, biomedical and marine industries because of their enhanced mechanical properties. However, the machinability of titanium alloys can be cumbersome due to their lower density, high hardness, low thermal conductivity, and low elastic modulus. The wire electrical discharge machining (WEDM) process is an effective choice for machining titanium and its alloys due to its unique machining characteristics. The present work proposes multi-objective optimization of WEDM on Ti6Al4V alloy using a fuzzy integrated multi-criteria decision-making (MCDM) approach. The use of MCDM has become an active area of research due to its proven ability to solve complex problems. The novelty of the present work is to use integrated fuzzy analytic hierarchy process (AHP) and fuzzy technique for order preference by similarity to ideal situation (TOPSIS) to optimize the WEDM process. The experiments were systematically conducted adapting the face-centered central composite design approach of response surface methodology. Three independent factors—pulse-on time (Ton), pulse-off time (Toff), and current—were chosen, each having three levels to monitor the process response in terms of cutting speed (VC), material removal rate (MRR), and surface roughness (SR). To assess the relevance and significance of the models, an analysis of variance was carried out. The optimal process parameters after integrating fuzzy AHP coupled with fuzzy TOPSIS approach found were Ton = 40 µs, Toff = 15 µs, and current = 2A.

Highlights

  • Titanium and its alloys possess a high strength-to-weight ratio which can be retained at high temperatures [1]

  • Titanium has a low elastic modulus responsible for the deflection of job, chatter, and vibrations while machining. Given these limitations of conventional machining of titanium, there is a crucial need to explore the machinability of titanium with non-traditional processes, and wire electrical discharge machining (WEDM) is one of the process to investigate for effective machining

  • analysis of variance (ANOVA) analysis confirmed that the input parameters Ton, Toff, and current significantly affect cutting speed, material removal rate, and surface roughness

Read more

Summary

Introduction

Titanium and its alloys possess a high strength-to-weight ratio which can be retained at high temperatures [1]. Owing to very high corrosion and erosion resistance, these metals are versatile in nature and they find applications in the pharmaceutical, aerospace, marine, chemical engineering, and food industries [2,3] They have excellent bio-compatibility and as a consequence, they have been broadly utilized in biomedical applications and surgical implants [4]. Titanium has very poor thermal conductivity, which leads to the localization of heat at the point of contact of the tool with the chip, resulting in high thermal gradients within the machining zone [7,8]. This in turn leads to increased tool wear rate and eventually tool failure. Given these limitations of conventional machining of titanium, there is a crucial need to explore the machinability of titanium with non-traditional processes, and wire electrical discharge machining (WEDM) is one of the process to investigate for effective machining

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call