Abstract

The ever-increasing energy consumption stimulated the development of various solar energy conversion systems. Photocathodic protection (PCP), emerges as a promising photoelectrochemical technology to alleviate metal corrosion, but the centralization of all core reaction steps on one photoelectric-conversion-unit induces extremely low energy conversion efficiencies. Herein, a proof-of-concept modular PCP device incorporating electron transport layer (ETL), photoelectric conversion layer (PCL), hole transport layer (HTL) and hole consumption layer (HCL) is fabricated to delocalize the key reaction steps for the first time. Such a unified ETL/PCL/HTL/HCL architecture facilitates the efficient extraction of photoexcited electrons from the small-gap PCL to the protected metal through ETL, and holes to HCL for water oxidization through HTL. The directional “macroscopic” charge migration, prolonged charge lifetime and accelerated water oxidation lead to significantly improved PCP effectiveness in simulated seawater. Our findings provide a groundbreaking PCP design, allowing fine-tuning individual functional modules and inter-modular interfaces to vastly elevate performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call