Abstract

The integration of DNA of highly oncogenic simian adenovirus type 7 (SA7) and non-oncogenic human adenovirus type 6 (Ad6) into the genome of newborn rat kidney cells transformed by fragmented DNA preparations was studied using reassociation kinetics and spot hybridization. Transforming DNA was fragmented with the specific endonucleases SalI (SA7) and BglII (Ad6). In contrast to the cell transformation by intact viral DNA, transformation by fragmented DNA resulted in integration into the cellular genome of not only the lefthand fragment with the oncogene but also of other regions of the viral genome. Additionally, integrated fragments were stable and preserved during numerous passages of cell lines, although they were not expressed, at least in the case of the Ad6-transformed cell line. The integration of the fragments of SA7 DNA was accompanied by loss of 25–50% of the mass of each fragment. Adding the linear form of the pBR322 plasmid to the preparation of transforming Ad6 DNA also contributed to its cointegration into the genome of the transformed cell. This technique of cell cotransformation with any foreign DNAs together with the viral oncogens may be used as an equivalent of an integration vector for eukaryotic cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.