Abstract
A new platform for lab-on-a-chip system is suggested that utilizes a biosensor array embedded in a digital microfluidic device. With field effect transistor (FET)-based biosensors embedded in the middle of droplet-driving electrodes, the proposed digital microfluidic device can electrically detect avian influenza antibody (anti-AI) in real time by tracing the drain current of the FET-based biosensor without a labeling process. Digitized transport of a target droplet enclosing anti-AI from an inlet to the embedded sensor is enabled by the actuation of electrowetting-on-dielectrics (EWOD). A reduction of the drain current is observed when the target droplet is merged with a pre-existing droplet on the embedded sensor. This reduction of the drain current is attributed to the specific binding of the antigen and the antibody of the AI. The proposed hybrid device consisting of the FET-based sensor and an EWOD device, built on a coplanar substrate by monolithic integration, is fully compatible with current fabrication technology for control and read-out circuitry. Such a completely electrical manner of inducing the transport of bio-molecules, the detection of bio-molecules, the recording of signals, signal processing, and the data transmission process does not require a pump, a fluidic channel, or a bulky transducer. Thus, the proposed platform can contribute to the construction of an all-in-one chip.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.