Abstract

Cooling buildings in summer is one of the main environmental problems for architects and occupants in many hot dry countries. The summer temperature during these countries reaches peaks of more than 40°C in some. Mechanical air conditioners can solve the problem, but they put a heavy strain on the electricity consumption. Egypt in general has rich sunny and clear skies. Therefore, these conditions encourage to enhance evaporating with natural ventilation and save energy. This paper develops an integration of direct evaporative cooling tower with a solar chimney multi-zone thermal ventilation model. Simulation is done using commercial couple multi-zone airflow under COMIS-TRNSYS software (Madison, WI, USA) to assess natural ventilation and indoor thermal comfort. The results show that the system generates 130.5 m 3 /h under the effect of solar radiation only and minimum 2 ACH without pressure coefficient which is considered the minimum requirement of ACH. The findings show that the new integrated system interacts with the building envelope and weather conditions to achieve a decrease in indoor temperatures that reach 10°C to 11.5°C compared to outdoor temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call