Abstract

The control of human Campylobacteriosis is a priority in public health agendas all over the world. Poultry is considered a significant risk factor for human infections with Campylobacter and risk assessment models indicate that the successful implementation of Campylobacter control strategies in poultry will translate on a reduction of human Campylobacteriosis cases. Efficient control strategies implemented during primary production will reduce the risk of Campylobacter introduction in chicken houses and/or decrease Campylobacter concentration in infected chickens and their products. Consequently, poultry producers need to make difficult decisions under conditions of uncertainty regarding the implementation of Campylobacter control strategies. This manuscript presents the development of probabilistic graphical models to support decision making in order to control Campylobacter in poultry. The decision support systems are constructed as probabilistic graphical models (PGMs) which integrate knowledge and use Bayesian methods to deal with uncertainty. This paper presents a specific model designed to integrate epidemiological knowledge from the United Kingdom (UK model) in order to assist poultry managers in specific decisions related to vaccination of commercial broilers for the control of Campylobacter. Epidemiological considerations and other crucial aspects including challenges associated with the quantitative part of the models are discussed in this manuscript. The outcome of the PGMs will depend on the qualitative and quantitative data included in the models. Results from the UK model and sensitivity analyses indicated that the financial variables (cost/reward functions) and the effectiveness of the control strategies considered in the UK model were driving the results. In fact, there were no or only small financial gains when using a hypothetical vaccine B (able to decrease Campylobacter numbers from two to six logs in 20% of the chickens with a cost of 0.025 £/chicken) and reward system 1 (based on similar gross profits in relation to Campylobacter levels) under the specific assumptions considered in the UK model. In contrast, significant reductions in expected Campylobacter numbers and substantial associated expected financial gains were obtained from this model when considering the reward system 2 (based on quite different gross profits in relation to Campylobacter levels) and the use of a hypothetical cost-effective vaccine C (able to reduce the level of Campylobacter from two to six logs in 90% of the chickens with a cost of 0.03 £/chicken). The flexibility of probabilistic graphical models allows for the inclusion of more than one Campylobacter vaccination strategy and more than one reward system and consequently, diverse potential solutions for the control of Campylobacter may be considered. Cost-effective Campylobacter control strategies that can significantly reduce the probability of Campylobacter introduction into a flock and/or the numbers of Campylobacter in already infected chickens, and translate to an attractive cost-reward balance will be preferred by poultry producers.

Highlights

  • Human infections with Campylobacter are considered an important public health problem all over the world and poultry has been identified as one of the most significant sources for humanCampylobacteriosis [1,2,3,4,5,6,7,8,9,10]

  • The results indicated that when applying the reward system 2, the best solution in terms of maximum expected benefit would be using the vaccine C in all case-scenarios

  • The conditions, selection of factors or variables, different parts of the models, and quantitative data need to be clearly specified to add value and perspective to the decision support system designed in every case

Read more

Summary

Introduction

Human infections with Campylobacter are considered an important public health problem all over the world and poultry has been identified as one of the most significant sources for humanCampylobacteriosis [1,2,3,4,5,6,7,8,9,10]. Human infections with Campylobacter are considered an important public health problem all over the world and poultry has been identified as one of the most significant sources for human. Campylobacter can break through biosecurity barriers and enter poultry houses, colonizing the chicken intestine and quickly multiplying in the intestinal mucosa. Campylobacter does not induce health or welfare problems in chickens [11]. Campylobacter spreads fast within broiler flocks and almost all birds in the same house will be infected within one week [12]. Campylobacter present in the intestinal tract of chickens going for slaughter might contaminate the slaughtering and food processing environment and the food products representing a public health risk for the consumers. Campylobacter seems to be highly infectious and humans may develop clinical disease with the ingestion of a Campylobacter dose as low as

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.