Abstract

Interaction between the embryo and endosperm affects seed development, an essential process in yield formation in crops such as rice. Signals that mediate communication between embryo and endosperm are largely unknown. We used the notched-belly (NB) mutant with impaired communication between embryo and endosperm to investigate the effect of the embryo on developmental staging of the endosperm and signaling pathways in the embryo that regulate endosperm development. Hierachical clustering of mRNA datasets from embryo and endosperm samples collected during development in NB and a wild type showed a delaying effect of the embryo on the developmental transition of the endosperm by extension of the middle stage. K-means clustering further identified coexpression modules of gene sets specific to embryo and endosperm development. Combined gene expression and biochemical analysis showed that T6P–SnRK1, gibberellin and auxin signaling by the embryo regulate endosperm developmental transition. We propose a new seed developmental staging system for rice and identify the most detailed signature of rice grain formation to date. These will direct genetic strategies for rice yield improvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.