Abstract
Heterogeneous data fusion from disparate geospatial sensors has drawn increasing attention in multimedia. Unfortunately, environmental sensors are usually sparsely and preferentially located, which restricts situation recognition of geographical regions and results in uncertainty in derived inferences. Spatial interpolation is an effective way to solve the problem of data sparsity, which demands the availability of related data sources. However, these data sources are usually in different resolutions, distributions, scales, and densities, which poses a major challenge in data integration. To address this problem, we present a novel spatial interpolation framework to incorporate diverse data sources and model the spatial processes explicitly at multiple resolutions. Spectral analysis is deployed to generate features at multiple spatial resolutions and to improve the interpolation accuracy at unobserved locations. A statistical operator based on the spatial Gaussian process is implemented and integrated into a geospatial situation recognition system, which can analyze heterogeneous spatio-temporal data streams derived from sensors. To verify the effectiveness and efficiency of the proposed framework, this framework is applied to the PM2.5 air pollution application. Experiments conducted in California, USA, demonstrate that the proposed method outperforms state-of-the-art approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.