Abstract

Composite coiled tubing is an emerging technology in the oil & gas sector that presents important advantages compared to the steel coiled tubing and conventional drilling. The composite tube has reduced weight, allowing extended reach and improved fatigue life. An additional advantage resides in the fact that the coiled tube wall can contain and protect additional functional elements, such as electrical conductors and fiber optics for sensing and data communication. Sensing systems based on Brillouin and Raman scattering can be used to verify the pipe operational parameters, prevent failure, optimize oil production from the well, provide strain distribution along the tubing and detect hot-spots in highpower cables. The integration of such sensing elements into composite tubing presents additional advantages and challenges. On one hand the embedded sensors are protected by the composite material and can be installed during production, avoiding external installation that could interfere with the tubing operations. In the other hand, the integration of optical fiber sensors into the composite structure requires the development of appropriate packaging and installation techniques that allow easy handling during production and avoid and damage to the sensor and the composite structure itself. This contribution presents the sensing cable designs for temperature and strain sensing in a composite coiled tubing as well as testing results form initial field demonstrations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.