Abstract

Plug-in electric vehicles (PEVs) and distributed generation (DG) can positively and negatively impact the distribution system. Therefore, this paper presents the modeling and analysis of DG and PEVs’ penetration levels of the three-phase unbalanced radial distribution system. The study aims to optimize the distribution system’s DG sizing and PEV charging to minimize total power loss. The test system is the 4th circuit of the Nonsung service station along Thaharn Road, Muang District, Udon Thani, Thailand. According to objective function and constraints, such control variables as installation buses and rated outputs of DG and the penetration levels of PEVs were obtained to evaluate the total power loss. Significantly, the charging demand of PEVs is an uncertain load estimated by queuing theory integration with the minimization tool called the differential evaluation (DE) method. According to the result comparison of a four case simulation, the total power losses of queuing theory and DE application are minimum. Finally, total power losses conform to the regulation of the Provincial Electricity Authority (PEA), Thailand.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call