Abstract
Abstract The discrete feature network (DFN) approach offers many key advantages over conventional dual porosity (DP) approaches, particularly when issues of connectivity dominate recovery and reservoir stimulation in fractured and heterogeneous reservoirs. DP models have been developed for complex multiphase and thermal effects, and have been implemented for basin scale modeling. However, DP models address only the dual porosity nature of fractured reservoirs, generally simplifying connectivity and scale-dependent heterogeneity issues which are modeled efficiently and more accurately by the DFN approach. This paper describes the development of techniques to integrate DFN and DP approaches. These techniques allow the analyst to maintain many of the advantages of the DP simulator approach without losing the realism of complex fracture system geometry and connectivity, as captured by DFN models. The techniques described are currently used within a DOE funded research project for linking a DFN and a DP thermal simulation model for the Yates Field, Texas. The paper describes some of the geological and engineering aspects of the Yates Field and gives two examples how DP parameters for the thermal simulation can be derived using DFN modeling techniques. P. 351
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.