Abstract
Plants acts asliving chemical factories that may create a large variety of secondary metabolites, most of which are used in pharmaceutical products. The production of these secondary metabolites is often much lower. Moreover, the primary constraint after discovering potential metabolites is the capacity to manufacture sufficiently for use in industrial and therapeutic contexts. The development of omics technology has brought revolutionary discoveries in various scientific fields, including transcriptomics, metabolomics, and genome sequencing. The metabolic pathways leading to the utilization of new secondary metabolites in the pharmaceutical industry can be identified with the use of these technologies. Genome editing (GEd) is a versatile technology primarily used for site-directed DNA insertions, deletions, replacements, base editing, and activation/repression at the targeted locus. Utilizing GEd techniques such as clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 (CRISPR-associated protein 9), metabolic pathways engineered to synthesize bioactive metabolites optimally. This article will briefly discuss omics and CRISPR/Cas9-based methods to improve secondary metabolite production in medicinal plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.