Abstract
As organisations become richer in data the function of asset management will have to increasingly use intelligent systems to control condition monitoring systems and organise maintenance. In the future the UK rail industry is anticipating having to optimize capacity by running trains closer to each other. In this situation maintenance becomes extremely problematic as within such a high-performance network a relatively minor fault will impact more trains and passengers; such denial of service causes reputational damage for the industry and causes fines to be levied against the infrastructure owner, Network Rail.Intelligent systems used to control condition monitoring systems will need to optimize for several factors; optimization for minimizing denial of service will be one such factor. With schedules anticipated to be increasingly complicated detailed estimation methods will be extremely difficult to implement. Cost prediction of maintenance activities tend to be expert driven and require extensive details, making automation of such an activity difficult. Therefore a stochastic process will be needed to approach the problem of predicting the denial of service arising from any required maintenance. Good uncertainty modelling will help to increase the confidence of estimates.This paper seeks to detail the challenges that the UK Railway industry face with regards to cost modelling of maintenance activities and outline an example of a suitable cost model for quantifying cost uncertainty. The proposed uncertainty quantification is based on historical cost data and interpretation of its statistical distributions. These estimates are then integrated in a cost model to obtain accurate uncertainty measurements of outputs through Monte-Carlo simulation methods. An additional criteria of the model was that it be suitable for integration into an existing prototype integrated intelligent maintenance system. It is anticipated that applying an integrated maintenance management system will apply significant downward pressure on maintenance budgets and reduce denial of service. Accurate cost estimation is therefore of great importance if anticipated cost efficiencies are to be achieved. While the rail industry has been the focus of this work, other industries have been considered and it is anticipated that the approach will be applicable to many other organisations across several asset management intensive industries.
Highlights
The UK rail industry is under intense pressures, in terms of capacity of the network, maintenance budgets and asset reliability
It is expected that increasing usage of autonomous systems will make a significant contribution towards reducing denial of service
While many view autonomous systems in terms of using UA V drones or robotic systems, much of the impact fro m the widespread application of autonomous systems will be in the area o f software based decision support or decision making
Summary
The UK rail industry is under intense pressures, in terms of capacity of the network, maintenance budgets and asset reliability. Network Rail is keen to improve their current practices with regards to maintenance activities of their high value assets throughout their entire rail network In order to build frameworks and models case studies are being built that highlight challenges that Network Rail faces and provide outline solutions. When these can be validated it is anticipated that the continuation work will be to apply the lessons learnt to other project partners’ maintenance challenges in the oil and nuclear sectors
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.