Abstract

Combining whole genome data with previously obtained amplicon sequences has the potential to increase the resolution of phylogenetic analyses, particularly at low taxonomic levels or where recent divergence, rapid speciation or slow genome evolution has resulted in limited sequence variation. However, the integration of these types of data for large scale phylogenetic studies has rarely been investigated. Here we conduct a phylogenetic analysis of the whole chloroplast genome and two nuclear ribosomal loci for 65 Acacia species from across the most recent Acacia phylogeny. We then combine this data with previously generated amplicon sequences (four chloroplast loci and two nuclear ribosomal loci) for 508 Acacia species. We use several phylogenetic methods, including maximum likelihood bootstrapping (with and without constraint) and ExaBayes, in order to determine the success of combining a dataset of 4000bp with one of 189,000bp. The results of our study indicate that the inclusion of whole genome data gave a far better resolved and well supported representation of the phylogenetic relationships within Acacia than using only amplicon sequences, with the greatest support observed when using a whole genome phylogeny as a constraint on the amplicon sequences. Our study therefore provides methods for optimal integration of genomic and amplicon sequences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.