Abstract

Transparent and conductive single-walled carbon nanotube (SWNT) thin films were fabricated onto glass substrates and their optical and electrical properties were evaluated. Particular attention was given to the dependence of the conductivity and optical transparency on the thickness of the films. Furthermore, the SWNT thin films were integrated in organic photovoltaic devices as the hole transport electrode. The best photovoltaic performance was observed for the devices utilizing 80 nm SWNT films with a sheet resistance of 362 Ω/sq, and a transmittance of 64% at 520 nm. The experiments reveal that SWNTs films can be used as transparent electrodes for efficient, flexible organic photovoltaic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.