Abstract

The application of catalysts is one of the most effective methods in the oil refining, chemical, medical, environmental protection, and other industries. In this work, carbon dots (CDs) were selected as an initiator and doped into the main catalyst, Zn0.2Cd0.8S, and a novel Zn0.2Cd0.8S@CD composite catalyst with a nanoflower structure was successfully obtained. The synthesized composites (Zn0.2Cd0.8S@CDs) were characterized by means of SEM, TEM, XRD, FT-IR, XPS, and UV-Vis DRS. Transient photocurrent response and Nyquist curve analysis further proved that the carrier separation efficiency of the composite catalyst was significantly improved. In addition, the photocatalytic activity of Zn0.2Cd0.8S@CDs for rhodamine B removal from aqueous solution was tested under visible-light irradiation. When the amount of Zn0.2Cd0.8S@CDs composite catalyst reached 50 mg, the degradation rate of rhodamine B was 79.35%. Finally, the photocatalytic degradation mechanism of the Zn0.2Cd0.8S@CDs complex was studied. CD doping enhances the adsorption capacity of Zn0.2Cd0.8S@CDs composite catalysts due to the increase in surface area, effectively inducing charge delocalization and enhancing the photocatalytic capacity. Zn0.2Cd0.8S@CDs composites with low cost and high carrier separation efficiency have broad application prospects in the photocatalytic degradation of dyes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.