Abstract
Sensors based on organic thin-film transistors (OTFTs) present various advantages, including high sensitivity and mechanical flexibility, thus possessing potential applications such as wearable devices and biomedical electronics for health monitoring, etc. However, such applications are partially limited by the biocompatibility, biodegradability, and sensitivity to target analytes of OTFT-based sensors, which can be improved by the incorporation of diverse biomaterials. This article presents a brief review from the viewpoint of the type of the integrated biomaterials, including naturally occurring biomacromolecules such as proteins, enzymes, and deoxyribonucleic acid, as well as biocompatible polymers such as polylactide, poly(lactide-co-glycolide), poly(ethylene glycol), cellulose, polydimethylsiloxane, parylene, etc. It is believed that future work in this field should be devoted to the selectivity, sensitivity, and stability improvement as well as the high-level integration and sophistication on the basis of the OTFT-based sensors for physical, chemical, and biological sensing applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.