Abstract
Biocatalyzed artificial photosynthesis systems provide a promising strategy to store solar energy in a great variety of chemicals. However, the lack of direct interface between the light-capturing components and the oxidoreductase generally hinders the trafficking of the chemicals and photo-excited electrons into the active center of the redox biocatalysts. To address this problem, a completely integrated artificial photosynthesis system for enhanced electronic energy-transfer efficacy is reported by combining co-axial electrospinning/electrospray and layer-by-layer (LbL) self-assembly. The biocatalysis part including multiple oxidoreductases and coenzymes NAD(H) was in situ encapsulated inside the lumen polyelectrolyte-doped hollow nanofibers or microcapsules fabricated via co-axial electrospinning/electrospray; while the precise and spatial arrangement of the photocatalysis part, including electron mediator and photosensitizer for photo-regeneration of the coenzyme, was achieved by ion-exchange interaction-driven LbL self-assembly. The feasibility and advantages of this integrated artificial photosynthesis system is fully demonstrated by the catalyzed cascade reduction of CO2 to methanol by three dehydrogenases (formate, formaldehyde, and alcohol dehydrogenases), incorporating the photo-regeneration of NADH under visible-light irradiation. Compared to solution-based systems, the methanol yield increases from 35.6% to 90.6% using the integrated artificial photosynthesis. This work provides a novel platform for the efficient and sustained production of a broad range of chemicals and fuels from sunlight.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.