Abstract
Neural networks and genetic algorithms are useful for clustering analysis in data mining. Artificial neural networks (ANNs) and genetic algorithms (GAs) have been applied in many areas with very promising results. Thus, this study uses adaptive resonance theory 2 (ART2) neural network to determine an initial solution, and then applies genetic K-means algorithm (GKA) to find the final solution for analyzing Web browsing paths in electronic commerce (EC). The proposed method is compared with ART2 followed by K-means. In order to verify the proposed method, data from a Monte Carlo Simulation are used. The simulation results show that the ART2+GKA is significantly better than the ART2+K-means, both for mean within cluster variations and misclassification rate. A real-world problem, a recommendation agent system for a Web PDA company, is investigated. In this system, the browsing paths are used for clustering in order to analyze the browsing preferences of customers. These results also show that, based on the mean within-cluster variations, ART2+GKA is much more effective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.