Abstract

In this study an integrated Algebraic method/ Extended Kalman fitler (EKF) attitude determination system is presented, in which the 2-vector and EKF algorithms are combined to estimate the attitude angles and angular velocities. As a reference directions for algebraic method, the unit vectors toward the Sun and Earth's Magnetic Field are used. The Euler angles produced 2-vector algorithm and their error variances are provided as input to the EKF. Then the EKF uses this attitude information as the measurements for providing more accurate attitude estimates even when the satellite is in eclipse. The “attitude angle error covariance matrix” calculated for the estimations of the algebraic method are regarded as the measurement noise covariance for the EKF. The parameters of satellite's rotational motion (Euler angles and angular velocities) are estimated using EKF. In comparison to more traditional approaches, this preprocessing step significantly reduces the complexity of filter design by allowing the use of linear measurement equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.