Abstract

In-memory computing with emerging non-volatile memory devices (eNVMs) has shown promising results in accelerating matrix-vector multiplications. However, activation function calculations are still being implemented with general processors or large and complex neuron peripheral circuits. Here, we present the integration of Ag-based conductive bridge random access memory (Ag-CBRAM) crossbar arrays with Mott rectified linear unit (ReLU) activation neurons for scalable, energy and area-efficient hardware (HW) implementation of deep neural networks. We develop Ag-CBRAM devices that can achieve a high ON/OFF ratio and multi-level programmability. Compact and energy-efficient Mott ReLU neuron devices implementing ReLU activation function are directly connected to the columns of Ag-CBRAM crossbars to compute the output from the weighted sum current. We implement convolution filters and activations for VGG-16 using our integrated HW and demonstrate the successful generation of feature maps for CIFAR-10 images in HW. Our approach paves a new way toward building a highly compact and energy-efficient eNVMs-based in-memory computing system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call