Abstract
Results from a series of experiments that use neural networks to process the visual speech signals of a male talker are presented. In these preliminary experiments, the results are limited to static images of vowels. It is demonstrated that these networks are able to extract speech information from the visual images and that this information can be used to improve automatic vowel recognition. The structure of speech and its corresponding acoustic and visual signals are reviewed. The specific data that was used in the experiments along with the network architectures and algorithms are described. The results of integrating the visual and auditory signals for vowel recognition in the presence of acoustic noise are presented. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.