Abstract

The pure-MBBR process was applied to remove ammonia in a full-scale micro-polluted-water treatment plant with a daily treatment capacity of 260 × 104 m3/d, Guangdong, China. The relationship between treatment efficiency, physical and chemical properties and microbial diversity in the process of biofilm growth was explored, and the oxygen transfer model of biofilm was established. The results show that the effluent of two-stage pure MBBR process is stable and up to standard after 10 days' incubation. The nitrification loads of two-stage biofilm was stable on the 14th day. The biomass and biofilm thickness lagged behind the nitrification load, and reached a relatively stable level on the 28th day. The species richness of biofilm basically reached a stable level on the 21st day, and the microbial diversity of primary biofilm was higher. In the primary and secondary stage at different periods, the relative abundance of dominant nitrifying bacteria Nitrospira reaches 8.48-13.60%, 6.48-9.27%, and Nitrosomonas reaches 2.89-5.64%, 0.00-3.48%. The pure MBBR system mainly adopts perforated aeration. Through the cutting and blocking of bubbles by suspended carriers, the oxygen transfer rate of the system was greatly improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.