Abstract

This paper reports the integration and experimental performance analysis of a GFDM-based 5G transceiver in a gigabit passive optical network (GPON), using radio over fiber technology. The proposed architecture enables to simultaneously transport two 5G candidates RF signals through an active GPON under real channel conditions. One signal is generated by a GFDMbased 5G prototype transceiver at 735 MHz, whereas the second one is synthetized by a vector signal generator at 26 GHz. A dualdrive Mach-Zehnder modulator has been utilized in the optical line terminal to modulate both signals, with the purpose of mitigating the interference between them. Particularly for the GFDM-based 735 MHz signal, a modulation error ratio (MER) of 40 dB has been obtained at RF-driven signal up to -9 dBm. Furthermore, the use of a digital predistortion scheme has been efficiently employed to reduce the impact of the nonlinear distortions and enhance MER. The 26-GHz RF signal, aimed for the 5G millimeter wave band, has been investigated as a function of error vector magnitude (EVM) for bitrates up to 1 Gbit/s. EVMRMS of 2.18% and 5.70% have been obtained for 100 Mbit/s and 1 Gbit/s, respectively. Finally, the latency and throughput measurements of the baseband signal originally running over GPON have shown no significant penalties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.